# Composites for Advanced Spacecraft Systems

Gregory S. Hickey
Jet Propulsion Laboratory
California Institute of Technology

Presented at:

Composites At Lake Louise '99, Lake Louise, Canada October 31, 1999

## Planetary Rovers

• Light weight
Structural composites
are extensively used in
planetary rovers to
provide thermal
enclosures, high
stiffness robotic arms,
and low mass
structures



#### Advanced Scientific Instruments

 Composites provide dimensional stability in extreme thermal and radiation environments



# Inflatable and Gossamer Structures

 Current development in inflatable and gossamer structures aim to develop booms, solar sails, sunshades, antennas, arrays, reflectors, rovers and others novel applications







### Electric Propulsion

 Carbon-Carbon composites are becoming an enabling technology in electric propulsion to extend performance lifetimes, improve dimensional stability and reduce mass







# Thermal Management

 Advances in high conductivity graphite fibers enable novel thermal management designs and applications



#### Nanolaminate and Nanotubes

Nanolaminate
 materials and
 nanotubes will open
 up new classes of
 structures, instruments
 and electronic
 applications

304 Stainless Steel - Zirconium



#### Acknowledgments

This work was conducted as the Jet Propulsion Laboratory, California Institute of Technology under Contract of the National Aeronautics and Space Administration.